Study of Discrepancy Phenomenon for Excitation Function of 191 Ir(n,2n) $^{190g+m1+m2+8.6\%m3}$ Ir

Zhang Changfan, Hu Guangchun, Xiang Yongchun, Wenjie, Zhou Haojun, Heyao, Gong Jian

China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang city 621900, China

Accurate 191 Ir(n,2n) 190 g+m1+m2+8.6%m3}Ir cross-section data are of great importance for the ICF medium- and high-energy neutron diagnostics and nuclear structure studies. Numerous integration experiments carried out to check the accuracy of the 191 Ir(n,2n) 190 g+m1+m2+8.6%m3Ir cross-section data indicated that the calculated-to-experimental ratios based on ENDF/B-VII.1 evaluation data are large deviations at devices with a large portion of fission neutrons. A new excitation curve Hybrid combining ENDF/B-VII.1 evaluation data with TALYS-1.96 program was constructed, which is in better agreement with the microscopic cross-sectional measurement data above 12 MeV. Several calculation models for the integration test were constructed based on both experiments and literatures, including the Cf source, CFBR-II pulsed reactor, Jezebel, Flattop25, Bigten and Bethe Spheres. A detailed analysis of the deviation between the experiments and calculation was conducted, and it was concluded that the current evaluation data of 191 Ir(n,2n) 190 g+m1+m2+8.6%m3}Ir are overestimated in the whole range of 8~20 MeV, where the evaluation in 8~12 MeV will lead to a fusion neutron diagnosis bias of ~10%, and that in 12~14 MeV will lead to a fusion neutron diagnosis bias of ~5%.